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Abstract

During a workshop about PM Storage rings in November 1004,
it was suggested by K. Bertsche to correct the undesirable consequences
of the temperature coefficient of the remanent field of the Charge Sheet
Equivalent Material (CSEM) to be used in hybrid magnets by using the
temperature coefficient of a ferromagnetic flux shunt. It is the purpose
to derive in this note a figure of merit that allows one to decide whether
such an approach is useful, and what material should be used.!
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Compensation of Some Consequences of the Temperature Coefficient of the
Remanent Field of Permanent Magnet Material in a Hybrid Magnet.
Klaus Halbach

UC Lawrence Berkeley Laboratory

1) Introduction

During a workshop about PM storage rings in November 1994 it was suggested by K.
Bertsche to correct the undesirable consequences of the temperature coefficient of the
remanent field of the Charge Sheet Equivalent Material (CSEM) to be used in hybrid
magnets by using the temperature coefficient of a ferromagnetic flux shunt. It is the
purpose to derive in this note a figure of merit that allows to decide whether such an
approach is useful, and what material should be used.

2) Definition of Model and Symbols.

I assume that the flux shunt consists of one or more sheets of ferromagnetic material that
connect the iron pole of the magnet to the iron yoke (often called the box) in a region of
essentially uniform H-field, with the thin dimension of the sheet being perpendicular to the
direction of the H-field. I assume further that H is large enough that the material is so
strongly magnetized that the B(H) curve in this field region can be described by

(2.1) B=H+Ms.

Indicating a derivative with respect to temperature T by ¢, the thermal properties of the
magnetization M is given to lowest order by the temperature coefficient

(22) DS=MS WS .

For the CSEM I assume similar relationships
(23) B=H+B,
(2.4) D,=B,”/B..

If it is necessary to take the differential permeability of the CSEM into account, I multiply
H in equs.(2.1) and (2.3) by that permeability, making a very small, but obviously never
noticeable, error in equ.(2.1) since that permeability is very close to one.

3) The Magnetostatic Equations Governing the Field B, in the Gap

I represent the CSEM by magnetic charge sheets and assume (for the typical box magnet
of any multipolarity) that they touch either surfaces of the block of iron that constitutes
the pole, or the surrounding iron box. The flux shunt is assumed to connect these blocks
of iron in the same way, subject to the condition stated in section 2. Assuming all iron,
except the shunt, having infinite permeability, the field By at some point of interest in the
gap can be extracted from



(3.1)  Bodo=B/{A: - Ay - MsAs .

The left side of this flux balance equation represents the total flux leaving the pole-block,
being on a scalar potential (relative to the box) that is proportional to the desired B,
taking into account the differential permeability of the materials, but ignoring B, and Ms.
With A, representing the total area of both CSEM and shunt material that touches pole
surfaces, and As representing the surface of the shunt material touching the pole, the right
hand side of equ.(3.1) describes the flux contribution to the pole generated by the active
material, and “lost” by the shunt. '

4) Design for First Order Temperature Independence, and Associated Figure of
Merit
The condition for first order temperature independence of By clearly is

(4.1)  B,(A:- Ag)=M;s'As,

yielding

42) AyA=1/(1+Ms/B.)=1/(1+MsB,*DyD,)

as a design equation. Using this in equ.(3.1), that equation can be rewritten as
- (43)  Bodo=BpA:,

with

(44) B.;=B.F.

F is the figure of merit ar;d is given by

4.5) F=(1-D/Dg/(1 +B/Ms*D./Ds) .

5) Use of, and Comments to, Equs.(4.3)-(4.5).

The great advantage of these equations is that in order to design a hybrid magnet with a
shunt one can use the “normal“ procedure to design hybrid magnets, but by using B
instead of B, one accounts for a shunt that is designed to give temperature insensitivity to
first order. This means also that “cost” associated with this shunt compensation is
immediately qualitatively and quantitatively apparent. Specifically, knowing that in a large
region of parameter space the amount of active CSEM material is inversely proportional
to the square of the remanent field, it becomes clear that the amount of CSEM would go
up roughly by a factor 1/F>. The figure of merit also makes it easy to decide which of the
materials that have large Ms, large Ds (and saturate at modest H) is the best material when
paired with a particular CSEM. It is also noteworthy that the “best” choice for shunt



material is dependent on the field in the gap only indirectly, namely through the choice of
the CSEM.

6) Generalizations

Even though it has been assumed for the sake of simplicity that all surfaces of CSEM with
magnetic charges touch iron, dropping that condition (as is necessary when one
incorporates fine field level tuning with the help of rotatable CSEM blocks) does not
substantially modify the equations, except that A, assumes a slightly different meaning.
While it is probably preferable to have the shunt material ends touch iron, even that is not
absolutely necessary. But the whole description of the effect of the shunt material does
assume that the unperturbed field is parallel to a long dimension of the shunt material. In
the unlikely event that one has to correct temperature changes to second order, this can be
accomplished by using two shunts with different magnetic characteristics.



